
MATHEMATICS OF COMPUTATION, VOLUME 26, NUMBER 120, OCTOBER 1972

Modification Methods for Inverting Matrices and
Solving Systems of Linear Algebraic Equations

By D. Goldfarb*

Abstract. Modification methods for inverting matrices and solving systems of linear
algebraic equations are developed from Broyden's rank-one modification formula. Several
algorithms are presented that take as few, or nearly as few, arithmetic operations as Gaussian
elimination and are well suited for the handling of data. The effect of rounding errors is
discussed briefly.

Some of these algorithms are essentially equivalent to, or "compact" forms of, such known
methods as Sherman and Morrison's modification method, Hestenes' biorthogonalization
method, Gauss-Jordan elimination, Aitken's below-the-line elimination method, Purcell's
vector method, and its equivalent, Pietrzykowski's projection method, and the bordering
method. These methods are thus shown to be directly related to each other.

Iterative methods and methods for inverting symmetric matrices are also given, as are the
results of some computational experiments.

1. Introduction. This paper is concerned with the related problems of inverting
matrices and solving linear nonhomogeneous algebraic systems of equations by a
class of direct methods which we shall call modification methods. The adjective
modification is used to describe these methods, for they are all based upon the modifica-
tion of a matrix and its inverse by a matrix of rank one. Most of these methods are
direct that is, a solution to the problem is obtained by using a finite number of
elementary arithmetic operations. The general formula that these methods are
based upon, however, is iterative in nature, and iterative methods are also given.

Modification methods have been developed and published by other authors.
These include the methods of Sherman and Morrison [30], [31], and [32], and com-
putational schemes and extensions based upon their work due to Woodbury [37],
Wilf [34], [35], Zielke [38], Ershov [10] (as reported in Faddeev and Faddeeva [11]),
and Kron [23]. Methods developed by the author are found in Section 2 (for in-
verting matrices), in Section 6 (for inverting symmetric matrices), in Section 7
(iterative methods), and in Sections 8, 9, and 10 (for solving simultaneous linear
equations). At first it was thought that all of these methods were new. Subsequent
comparisons with the literature, however, revealed that, although the theoretical
development underlying these methods was new, most of them were essentially
equivalent to, or were a compact form of, known techniques. These techniques
include Sherman and Morrison's modification method [31], Hestenes' biorthogonali-
zation method [17], [18], Gauss-Jordan elimination, Aitken's below-the-line elimina-

Received April 3, 1971.
AMS 1969 sutbject classification7s. Primary 6535, 1510, 1515; Secondary 6510, 6580, 1525.
* This research was supported in part by City University Faculty Research Grant No. 1085

and the IBM New York Scientific Center.

Copyright 0 1972, American Mathematical Society

829

830 D. GOLDFARB

tion method [1], Purcell's vector method [29] and its equivalent, Pietrzykowski's
projection method [26], and the bordering method.

The relationships between these methods and those developed by the author
are explored in Sections 4, 5, 9, and 11. As a result of this analysis several of these
methods are shown to be related that were previously thought not to be.

Brief discussions of the computational aspects of the modification methods
developed here are found in Sections 3 and 12. Two algorithms, algorithm (2.8)
for inverting matrices and algorithm (10.2) for solving systems of linear equations,
are particularly interesting, since both require no more arithmetic operations than
Gaussian elimination. Both of these algorithms were coded in APL and were tested
computationally on several numerical examples. These results are found in Sec-
tion 13.

The purpose of this paper is not to encourage the rejection of Gaussian elimina-
tion in favor of modification methods. Many fine computer codes for the former
method, incorporating scaling, pivoting, and other error-reducing procedures, are
in use and are readily available. Rather the purpose of this paper is to present a
comprehensive exposition of modification methods.

2. Generalized Modification Methods for Matrix Inversion. Consider the fol-
lowing algorithm based upon a general rank-one modification formula due to Broyden
[4].

(0) Choose, as an initial approximation to A- 1, some nonsingular n X n matrix
B (). Let xl # 0, x, x # 0 be some set of mutually orthogonal n-dimensional
column vectors.

(i) Compute

(B k= B - (B Ax xk)xkB

for k = 1, 2, , n where i4, i2, , 4n is some permutation of 1, 2, , n.
The main result of this section is given by the following theorem.
THEOREM 2.1. If x,B (k-Axk A O, for k = 1, 2, , n then

n

A1 = R where R = E XIkXkl/IXk I.
k=i

Proof. Substituting Rxk = x, in (2.1) gives

(2.2) B'k) = BI(k-I) - (B k AR
I)xkXB(k) k n.

Using the well-known formula, due to Bartlett [2],

(2.3) (M + UV,)-'1 = M-1 _ M-1UV'M-1/(1 + v'M 'u)

relating rank-one modifications of a matrix and its inverse, we obtain

B(k) (B(k-l))-l + (AR - (B (k)1) xx k 1)XkXk,,n.

IIlXk I

Hence,

(2.4) (B(k))-I - AR = ((B(k-l)) - AR)Pk

INVERTING MATRICES AND SOLVING EQUATIONS 831

where Pk = I- XkXkl/ X, I2 is an orthogonal projection matrix. It follows that

(2.5) (B -l AR = ((B'-') _ AR)- P, * * * Pn-

But P, ... P= 0, where 0 is a matrix of all zeros. Therefore,

B(n) =(R-= -1 A-' B =(AR)1 R

and the theorem is proved.
The matrix R behaves very much like a permutation matrix and in fact, is one

if the orthogonal set of vectors { xi } is the set of unit coordinate vectors { e, }. If Xi, = Xk

for all k, then R is obviously the identity I. If xk and Xlk are interchanged in (2.1),
then A` = R-1B , where R-1 = Ek 1 XkXtk/IlHXik 2

If algorithm (2.1) is to be at all useful, we should be able to choose an ordering
of the orthogonal set of vectors { x, } and a permutation i,, 4, .. , in so that the de-
nominator in (2.1) does not vanish on any step. With this in mind we prove the
following two lemmas. The first is a restatement of a result proved by Dennis [6,
Theorem 5].

LEMMA 2.1. If B(k1) is a nonsingular n X n matrix and if xB(kl)Axk 5 ?,
then B (k) is nonsingular.

Proof. Assume that B(k) is singular, i.e., B(k)u = 0 for some u # 0. From (2.1)
we have that

O = x~(kBu= u - xkB(k-) - (B Ax, -k Xk)XIBU 0 XIB u = XIB
(k-1~Buc) Axk

o X_ 2I2 .xkBk-)U 0
B(k-1) Axlk

Since the denominator is bounded and xk $ 0, x'B (k-)U must equal zero. But

this implies from (2.1) that B(k)U = B(k-l)u = 0, for u # 0 contradicting the hy-
pothesis that B(k-) is nonsingular. Hence, B(k) must also be nonsingular.

LEMMA 2.2. (B(k) AR - I)Ul,k = 0 where Ut, , = [ut,, u,+,, . , u3] and, U, =

xt/, x, I. U ,, and 0 are n X (j -i + 1) matrices, the latter having all zero elements.
This result is an immediate consequence of (2.5) for n = k.
THEOREM 2.2. If A is nonsingular, there exists an ordering of the vectors { x,

and a permutation i, i2, ... , in such that (2.1) is well defined (i.e., the denominator
x'B (k- ')Ax, does not vanish at the kth step).

Proof. Let U = Ul,n = [U,k-1i Uk,n] = [Ul U2].

It is assumed that (2.1) was well defined on all steps preceding the kth step.
U'B (k- 1)ARU is nonsingular since U, A, R and B (k- 1) are nonsingular. B 'k- 1) iS

nonsingular by Lemma 2.1 so long as B'?' is chosen nonsingular.

UfB ')ARU = [(k-1) ARU UfB(k-1)ARU2l

U'B(k1) ARU, U U'B()AARU2

IU Ul ULBB(k1) ARU2' - Ik-i U'B(k-B) ARU2 =
I I

I?L
I(k -1)

u ul U2B 1sARU2 0 ULB' ARU2

by Lemma 2.2, where Ik-, is a (k - I)st order identity matrix.
The possible denominators in (2.1) on the kth step, allowing for reordering

the vectors xt, -.. , xn and the permutation ik, *-- , i,, are just the elements of

832 D.GOLDFARB

U2B(k-lARU2. These cannot all be zero, for if they were, U'B(k-)ARU would
be singular. Since it is not singular, there must be some choice of Xk, *. , x" and
some permutation that gives a nonvanishing denominator.

Actually, Theorem 2.2 is more restrictive than is necessary. On the kth step,
if X7, is fixed there must be some choice xl among the vectors Xk, * * , x, such that
xIB(k-l'Ax,, # 0. Otherwise the Ith row of U'B(k-')ARU would equal zero, con-
tradicting the nonsingularity of A.

The most natural choice for the set of orthogonal vectors is the set of unit vectors
e, }. With this choice, algorithm (2.1) becomes

(0) Choose an n X n nonsingular matrix B(0).
(i) Compute

B(k) =B(k-1) (Bk) k ekekB(l (2.6) B = B I k ,1 k = 1, 2, n,

where Ak denotes the kth column of A. If we let b'k) and a, denote the elements
of Bk) and A respectively, and if on the kth step ik k, (i) becomes

(i)' Compute

n

(2.6a) c(k) = b(-1) a ik, = * n.
j =1

(ii)' Compute

(2.6b) b bk) / b ck- k), ik = 1, 2, n.. ,

and

(2.6c) b k= b(k- 1)_ c(k)b(k) i, i = 1, 2, n , n i z k.

In step (ii)'. C k) may equal zero. Theorem 2.2 and the discussion following it
only guarantee that not all the C(k) j = k, , n, computed in step (i)' will be zero
if A is nonsingular. Thus, row interchange may be necessary. In practice, the actual
interchange of rows may be avoided through the use of a permutation vector. Rather
than using Ck) as the denominator in (ii)', it is advisable to use C(k) as the divisor,
where

(2.7) IC, k| max |C |, i j il, * * , ik-1-

The subscript k would then be replaced by i, and i # k would be replaced by i # ik
in (ii)'. This is the analog of partial pivoting in Gaussian elimination, i.e., of choosing
as the pivot, an element of largest absolute value in the kth column. Henceforth,
we shall assume that i, = k in (2.7).

The most economical choice for B'0) both in terms of computer storage and the
number of operations performed is the identity I. This leads to the following
algorithm.

For k = 1, 2, ***,n,
(i) compute

k-i

(2.8a) ck) = bq 1 a3k, i = , 1,

INVERTING MATRICES AND SOLVING EQUATIONS 833

k-1

(2.8b) ck) Zb 'a) aik+ ask, i =n.
I =1

If Ckk) = 0, terminate. (A is singular.) Otherwise
(ii) compute

(2.8 c) bkk = 1 /ck,

(2.8d) b k' = bk) bk k1) = 1, , k - 1,

(2.8e) b = bk1) c(k) b(k) 1, n; i # k, j 1, k - 1

and

(2.8f) bs k C=)tbk k i ,***,n; i k.

As in algorithm (2.6), partial pivoting may be used (with appropriate permutations
of integers). It will be shown later that the numbers CMk), j = k, , n, are equal
to the elements Uk, of the upper triangular matrix U of Gaussian elimination assuming
exact arithmetic is used. Choosing ik from (2.7) thus corresponds exactly to partial
pivoting in Gaussian elimination.

Analogs of partial (row) pivoting and complete pivoting are also possible. These
procedures require the computation of the inner products of all remaining columns
of A (i.e., n - k + 1 columns at the kth step), with the kth row of B(k-1) in the
former case and with the last n - k + 1 rows of B(k-1) in the latter case. As these
greatly increase the amount of work required by the algorithm, they are not
recommended.

An alternate form of algorithm (2.8) is obtained by replacing steps (2.8d)-(2.8f) by

(2.8d') bk) = -C(k)bk) i = 1, , n; i # k,

(2.8 e') bsj) = bs i 1 + b7k *bi, i = 1, , n; i # k, j = 1, k - 1

and

(2.8f) b(k) bk) bk-1) j = 1, ,k - 1.

These formulas require exactly the same number of multiplications, reciprocals,
and additions and subtractions as formulas (2.8d)-(2.8f).

3. Computational Aspects. There are basically three important criteria for judg-
ing methods for inverting matrices on a computer. They are the number of arithmetic
operations required, the storage and data handling requirements, and the suscepti-
bility to rounding errors. A fourth, though less important criterion, is algorithmic
complexity. Throughout this section, unless stated otherwise, we shall assume that

IC ck)I I CM for all k and i > k; i.e., ik = k. This is important for any analysis of
numerical error, but has practically no effect on the storage and arithmetical re-
quirements of the algorithms except for the general case of algorithm (2.1).

With regard to the first criterion, each iteration of a]gorithm (2.1) requires 4n2 + ni

multiplications, n divisions, and 4n2 - 2n additions and subtractions. Each iteration
of algorithm (2.6) requires 2n2 - n multiplications, n divisions, and 2n2 - 2n addi-
tions and subtractions. Algorithms (2.1) and (2.6), respectively, require approxi-

834 D. GOLDFARB

mately 4 and 2 times as many operations as Gaussian elimination. Algorithm (2.6),
however, is competitive with Hotelling's iterative formula [19], if used to improve
an approximate inverse, obtained by it or some other method.

The kth iteration of algorithm (2.8) requires n(2k - 1) - 1 multiplications, 1
reciprocal, and 2(n - 1)(k - 1) additions and subtractions. For the complete inversion
the totals are n3- n multiplication, n reciprocals, and n3 - 2n2 + n additions and
subtractions. These operational counts are identical to those for Gaussian elimination.
Although the method of modification has been discussed by several authors, this
fact seems to have gone unnoticed.

The handling of data for these methods is particularly convenient, since single
columns of A (or rows of A if we work with A') are needed on each iteration. The
standard forms of the Gauss and Gauss-Jordan methods require the entire matrix
on each iteration, while the original versions of the Crout [5] and Doolittle [7] methods
require, on the kth iteration, all as yet uncalled for components of the kth column
and row. An algorithm can also be given for decomposing A into LU that changes
only the kth column of A on the kth step. (For example, see Fox [12, p. 103].)

Only some brief comments will be made here with regard to the effect of roundoff.
A more complete analysis will appear in a later paper. On each iteration, the effect
of the algorithm is to postmultiply the matrix difference Bk- 1) - _ A by an orthog-
onal projection operator. This suggests that the algorithm is not overly susceptible
to rounding errors. Limited numerical experience (see Section 13) has tended to sup-
port this. On the other hand, even if partial pivoting is used, some of the ratios Ck) /Clk)

may be greater than one, as in Gauss-Jordan elimination, making it difficult to obtain
error bounds. As discussed in Section 5, algorithm (2.8) and Gauss-Jordan elimina-
tion are very directly related. As in the Crout algorithm, the numbers Clkl in algorithms
(2.6) and (2.8) should be computed as double-precision accumulated inner products
before final rounding to single precision. This helps to keep the rounding errors small.

Lastly, the algorithms developed here are very simple to program and implement
on a computer.

4. Relationship to Sherman and Morrison's Modification Method. Algorithm
(2.1) is directly related to the method of modification [30], [31]. In fact, formula
(2.6) is identical to the one given by Sherman and Morrison [31].

The method of modification (or reinforcement** as it is called by Faddeev and
Faddeeva [11]) is based upon Bartlett's formula (2.3). We can invert a matrix A by
considering it as the last matrix in a sequence of invertible matrices, A (0, A
A (= A, each differing from the preceding one by a matrix of rank one, and using
formula (2.3) to compute B(k = A(k)- from B(kl) = A(kl)-l IfAk) adA(knd)
differ only in the kth column, and we choose the kth column of A (k) to equal the
kth column of A, then u = (A - A (k- l))ek and v = e, on the kth application of (2.3).
Making the appropriate substitutions yields

B(k) = B(k-I) B (k-)(A - A)e,e(k-
1)

(4.1) - ?eB '(kA - (k-)e

Since B(kjA (k) = I and ele, = 1, it is obvious that this method is equivalent to
** One of the referees has pointed out that "completion" is probably a better translation of the

Russian "popolnenija".

INVERTING MATRICES AND SOLVING EQUATIONS 835

algorithm (2.6). If we choose the rank-one matrix difference between Ak-l and A (k) to
be

(AR - A(k-1))XkXk/Xkl 12 = (Ax,k - A (k)xk)xk/xkl 2

we obtain the equivalent of the general algorithm (2.1) by application of (2.3) itera-
tively.

Although (4.1) and (2.6) with i, = k are identical if exact arithmetic is used, Powell
[27] has shown, both theoretically and numerically, that the latter is to be preferred
because it tends to suppress the contribution from any errors in B(k-1). A similar
statement holds for the more general algorithms. Specifically, if B k) and B (k-i)

are approximations to A(k) ' and A(k-l)-, where

A'k) = A(k-1) + (A - A(k))XkXkHlXk2 |

then one finds that B (k),3 - A (k) = [B(k-l)- - A (k-
1)]Pk using the Broyden formula

(2.1) and B(k)- - A (k) = B(k-1)- - A (k-l) using the Bartlett formula.

5. Relationship to Other Methods. One may view algorithm (2.6), i.e., Sher-
man and Morrison's method of modification, as a method for forming from the rows
of B(0), a basis that is dual or biorthonormal to the basis consisting of the columns
of A, since after the kth step B(k 'A, = e, for j = 1, 2, * * *, k. This dual basis is given
by the rows of B("). It is not surprising, therefore, that algorithm (2.6) is also identical
to Hestenes' biorthogonalization method [18]. If the kth row of B(k) is left unchanged
on the kth iteration, B(k)Al = 62e, for j = 1, . . , k, where 5, is a scalar, and the
version of Hestenes' method described by Fox [12] is obtained. A` is then equal to
D-lB(), where D is a diagonal matrix whose kth diagonal element equals ak.

Hestenes recommends choosing B'0? = A' [18]. With this choice of B'0? or, in fact,
any B'0? such that B'?'A is positive definite, he shows that the denominator in formula
(2.6b), i.e., c'., does not vanish so long as A is nonsingular and exact arithmetic is
used. For numerical considerations, it is still preferable to employ partial pivoting.

Hestenes also shows that his algorithm (i.e., algorithm (2.6) is equivalent to
applying Gauss-Jordan elimination with pivot row division by the pivot element to
the matrix B'?'A. This can be seen by writing (2.6), with i, = k, as B(k) =

(I- _V'e)Bk- where v(k) (B(k-l)A - I)ekl/eB(k-l)Ak. Now v'*' is chosen
so that

B(k) Ak = (I - v (k) e)B(k1) Ak = ek-

By Lemma 2.2, B(k)A, = e, for j < k as well. Thus

A- = B(n) = (I - v(n)el) ... (I - v('el)B('

If B (0) = I, then we have A-' expressed exactly as it is by the Gauss-Jordan algorithm.
However, in modification algorithms, we do not record the elements of the "reduced"
matrix B(k)A but only those of B(k); i.e., the modification algorithm (2.8) is a "com-
pact" form of Gauss-Jordan.

The form of Gauss-Jordan elimination described above is operationally identical
to Aitken's below-the-line elimination method [1], applied to the partitioned matrix

[A Ijl

836 D. GOLDFARB

Thus, algorithm (2.8) may also be viewed as a compact method for computing A1
in the lower right corner in the below-the-line method.

After k steps of algorithm (2.8),

B(k = [All o
(k) ~-A21 A l

]

and

B(k) A = | k -l

0 A22 - A21A_ A12,

where All, A12, A21 and A22 are the appropriate k X k, k X (n -k), (n -k) X k,
and (n - k) X (n - k) submatrices of the partitioned matrix

A = --11- __A21
A21 A A92J

The connection between algorithms (2.8) and (2.6) and the inversion of a matrix by
either successively bordering its submatrices or by partitioning is easily demonstrated.
The relationship between Sherman and Morrison's modification method and the
bordering method was first pointed out by Dwyer [9, pp. 292-294].

6. Symmetric Matrices. Both Greenstadt [16] and Powell [28] have indepen-
dently developed a symmetric analog of Broyden's rank-one modification formula.
Using Powell's [28] formula for updating the corresponding inverse, we arrive at the
following general algorithm for inverting a symmetric matrix.

(0) Choose, as an initial approximation to A-1, some nonsingular symmetric
n X n matrix B '?'. Let xl 5 O, * , xn 5 0 be some set of mutually orthogonal vectors.

(i) Compute

(6 .1) B(= B(k-1) ?!+ { B(k-l)Xk[3Yk' - axB (k1)] + YkI[3xkB - Yk] },

k = 1,2, ,n,

where Yk = B (kl)Axk - Xk, a = ylAXk, x3 - xB(k Axk, -y = xIB (k1)Xk and
6 = a _2. For simplicity we have assumed that pivoting is not required.

Using the generalized modification formula

(6.2) (M + UV')-1 = M- - M- 'U(I + V'M-Ul U V'M

where both U and V are n X 2 matrices, we can show that if the denominator does
not vanish on any step, then

B(k) - A = Pk*Pk-1 ... P1(B(0) - A)P1 ... Pk-lPk and A = B

Identity (6.2) is usually attributed to Woodbury [37]. However, Zielke [38] notes that
it first appeared in a paper by Duncan [8].

Each step of algorithm (6.1) requires 4n' + O(n) multiplications and divisions.
If the set of orthogonal vectors {x*} are the coordinate vectors {ek}, these require-
ments become 2n2 + O(n), and formula (6.1) reduces to Zielke's formula [38].

INVERTING MATRICES AND SOLVING EQUATIONS 837

Other modification methods that preserve the symmetry of B(k), the matrix ap-
proximation to A-1, if A is symmetric, have been described by Householder [20],
Wilf [34], [35], and Bodewig [3].

7. Improving an Approximate Inverse. Algorithms (2.1) or (2.6) can also be
used in an iterative manner to improve an approximation to A` that has been com-
puted using these algorithms or some other inversion technique. If B0') is a fairly
good approximation to A-', pivoting will not be necessary, for B0'?A / I, and the
remarks of Section 5, with regard to choices of B'?' such that B'?'A is positive definite,
apply. Algorithms (2.1) and (2.6) can be applied in integral multiples of n iterations,
as previously described in Section 3. The algorithms, however, may be terminated
when some norm of Bk-l)A - I becomes small enough.

One variant of algorithm (2.1) that is entirely iterative is to compute, on the kth
step, the eigenvector of B(k-l A - I corresponding to the eigenvalue of
maximum modulus. This vector can then be used in formula (2.1) in place of Xk

(and XLk). Caution must be used not to choose an eigenvector with eigenvalue -1,
for this would cause the denominator in (2.1) to vanish. This could only happen if
the matrix B(k- "A has a zero eigenvalue; i.e., A is singular. The eigenvalue, i, need
only be computed approximately, using, for example, the power method. After one
iteration of algorithm (2.1) with Xk = i, (B(k'A - I) t = 0, and since I IPkH I -< 1,
JIB 'k'- - All < ?IB k'-1 - All from Eq. (2.4). Thus by these criteria, BI k) is a
better approximation to A-1 than is B(k-l). This is a time-consuming procedure.
However, it might be worth performing one such iteration to improve an approxi-
mate inverse, B"), obtained by algorithm (2.6), if the norm of the residual matrix
corresponding to B") was greater than some acceptable value.

If B'?'A is symmetric, as would be the case for B'0? = I and A symmetric, or
B'?' = A', then the above procedure results in an n-step algorithm for inverting A.
(This assumes that the eigenvalue problem is solved exactly, at each step.) If B'?'A
is symmetric, there exists an orthogonal set of eigenvectors of B'?'A, 011 ,2 * n

corresponding to eigenvalues X1, X2, * Xn. Therefore, from (2.1),

(7.1) B B(?) ? (L -1) B

and

(7.2) BM'' A = B('A + (1 -

B'1'A is obviously symmetric and has eigenvectors 4 , .2 - . corresponding to
eigenvalues 1, X2, -- , Xn. When formula (7.2), with sub and superscripts 0 and 1
replaced by k - 1 and k, is used in conjunction with the power method to determine
the eigenvalues and eigenvectors of (B(k- 1)A - I), and hence those of B(k- 1)A, for
k = 1. , n, the result is obviously a variant of the orthogonalization method for
determining the intermediate eigenvalues and eigenvectors of a matrix. Formula
(7.1) iteratively builds up the inverse matrix as the eigenvalues and eigenvectors are
determined.

8. Modification Methods for the Solution of Linear Equations. In this section,
we shall present several algorithms for solving systems of n linear equations in n

838 D. GOLDFARB

unknowns that are based upon the rank-one modification formula (2.6). More general
methods based upon the more general formula (2.1) can also be derived. However,
these methods would require a much greater amount of computational effort than
those that will be presented.

In Section 2, we proved that, allowing for row permutations of B(k), i.e., partial
pivoting, and assuming that B(0' and A were both nonsingular, B" = R-1A-1 where
R is a permutation matrix. In order to simplify the following presentation, we shall
assume that partial pivoting is unnecessary. This will be the case if all leading square
submatrices of A are nonsingular. Under this assumption, the solution to the system
of linear equations

(8.1) Ax = b,

is given by B`b.
Postmultiplying both sides of Eq. (2.6) (with i, = k) by b and letting B (kb = X(k)

for all k yields the following iterative formula:

(8.2) x = x - (B A, - ek)Xk /kB A,

where xkk-1) is the kth component of the vector x (k-1). If we set x(0) =B(0)b, x(n) will
equal A-1b, the required solution. This, as it stands, is not a very efficient method
since the full matrix B (k- 1) is needed at the kth step. Even if the iterations were begun
with B(0) = I, and hence x(0) = b, the method would still require approximately
three times as much work as required by Gaussian elimination to solve (8.1).

In formula (8.2), we do not need the matrix Bk-1) on the kth step, but rather the
vector B'k- 'Ak. Definingthevectors d(k = BIk)A_, 0< k < j < n, andd'+k = (kk =

B(k)b, 0 < k < n, we obtain from (8.2) and (2.6) the following iterative scheme for
computing the dk'):

d(k) d(k1) (dk - ek) dfk- d d (k-1)

(8.3) dkk

j= k + 1, * n ,n+ 1, k = 1, *- ,

where dkyl) denotes the kth component of dikl. The solution to (8.1) is given by
x = d'+'. Finally, (8.3) can be written as

(k) k_ 1) (k-1)
(8.4a) dk) df>1l/dkk j = k ? 1, * * ? 1,

and

(k) (k 1) (k- 1) (k)

(8.4b) '
=dJ dk *

j = k + 1, - ,n + 1, i = 1, n; i $ k.

These formulas are just those of Gauss-Jordan elimination with division of the
pivot row by the pivot element, and are operationally equivalent to Aitken's below-
the-line elimination method applied to

[L- j lor [- - - l

INVERTING MATRICES AND SOLVING EQUATIONS 839

There is an alternative scheme that lies somewhere between computing the full
matrix B(k) and computing the vectors d$k) = BIk'A, on the kth iteration. We can
compute the last n - k rows of B(k) on the kth step, and, at the same time, compute
the first k rows of the matrix B(k) [Ak+l A, +2, A.] = [dkk) . . drk']. This method
[15], however, requires In3 + In2 + %n multiplications and divisions, and 2n3 -n2
? 6n additions and subtractions, whereas the corresponding counts for Gauss-
Jordan elimination, i.e., algorithm (8.4), are n3 ? 2n2 and 'n3- n n.

If we multiply both sides of formula (2.6) on the left by b' rather than on the right
by b, we arrive at a method for computing the solution to x'A b' or equivalently,
A'x = b, since b'B(') = b'A-'. Specifically, if we let x(k)= b'B(k), for k =

0, 1,... , n, we obtain

(8.5) x(k)t =
e(k-i)k

_ (X(l)'AAk_bk)e B(kl) k = 1, , n.

We can, of course, use this iterative formula together with (2.6) to solve (8.1). We need
only replace A by A' in both formulas. Furthermore. observe that only rows
k + 1, , n of B(k) are needed after the kth step. Therefore, after transposition of
formulas (2.6) and (8.5), and using B(k) to denote what was previously indicated by
B(k)', we obtain the following algorithm, starting with B'0? = I:

(0) Set x (?) = b.
(i) Compute

k-1

c5 = Z akpbp> + ak, ki = n,

(8.6a) P=1
n

(k) (k-i) - k n+1 = E akpx, - b,
p=1

(8.6b) b =k ck) ICk) , = k + 1, * ,

(8.6c) b k) = b b + (k-1)b(k) i = 1. , k - 1,j = k + 1, . . . n,

(8.6d) X(k) = bk - Cn(k1/C(k)

and
(k) k 1 CM ICk) k-) (8.6e) x = xt) - (cn +/cfk)btk-1) i = 1, , k - 1,

for k= 1, 2, . n.
This algorithm can be expressed more compactly by defining the n X (n + 1)

and (n + 1) X (n + 1) partitioned matrices

(8.7a) A = (A -b)

and

(8.7b) = [B() x(k)]

We can also make the algorithm more general by choosing, in step (0), B (0) to be
any nonsingular matrix and x'? = B' 'b. Step (i) then becomes

840 D. GOLDFARB

(i') Compute
n+ 1

(8.8a) ck) = ak b(k-1) = k, n.. , n + 1,
p=l1

and

(8.8b) bk) = b(k1) b(k-1)(C(k)/C(k)) i = 1, , n, j = k + 1, , , n 1

for k = 1, 2, , n. After n iterations, the solution of (8.1) is given by x' tn = +

i= 1 *- , n. Notice that only the columns of B(k) that are needed in subsequent
steps are updated.

As in algorithms (2.6) and (2.8), incorporation of a partial pivoting scheme in the
above two algorithms is advisable, and sometimes necessary. This is accomplished
exactly as it is in the inversion algorithms.

Algorithm (8.6) requires a total of 'n3 + 2n2 + 6n multiplications and divisions
and 1 n3 + n2 + 2n additions and subtractions to solve an n X n system. The more
general algorithm (8.8) requires n3 + _n2 + 'n multiplications and divisions and
n3 ? 2n2 - n additions and subtractions.

Klyuev and Kokovkin-Shcherbak proved that 'n3 ? n2 - n muttiplications and
divisions and 'n3 + 2n2 - 6n additions and subtractions are the minimal numbers
of these operations that are required to solve an n by n system of linear equations when
using methods which employ linear combinations of rows or columns [22]. Strassen
has shown that one can do even better than this, if one does not restrict oneself to
operations on rows and columns as a whole [33]. Algorithm (8.6) is in the class of
methods treated by Klyuev and Kokovkin-Shcherbak and requires only ln(n + 1)
more multiplications and divisions and 'n2 + 5n more additions and subtractions
than the minimum amount required by such methods.

The more general algorithm (8.8) may be used instead of algorithm (8.6) at the
expense of approximately tripling the number of operations that need be performed.
If one chooses B(0) = A', it can be shown that c{k) 5t 0, for k = 1, 2, , n, assuming
that A is nonsingular and that exact arithmetic is used. (See the discussion of Hestenes'
biorthogonalization method in Section 5.)

Let us consider algorithm (8.8) in greater detail. Each iteration can be expressed
in the terminology of (8.7) as

(8.9) P(k) (k-1) _ P(k-1) c(k) k = 1, 25 . ., n,

where C(k) is an (n + 1) X (n + 1) matrix, all of whose elements are zero except for
the last n - k + 1 elements of the kth row which are

(8.10) (k)= C(k) /(k) = k + 1, k + 2, . . ., n + 1.

The Clk), j = k, , n + 1, are, of course, computed according to (8.8a).
Adding the n matrix equations, (8.9) yields

BP(n) = (?) _ (.P(0)C(1) + P(])C(2) + + n-)n)

The matrix product p(k-)1C(k) depends only upon the kth column of B (k- 1) and
affects only the last n - k + 1 columns of B(k) in Eq. (8.9). Therefore the kth columns
of B(kl, (k) * B(n) are identical and B(n) = B'? _B(n)(C(1) + C(2) + + On))

INVERTING MATRICES AND SOLVING EQUATIONS 841

or

(8.11) b'()C= B'?'

where C is unit upper triangular with elements ci i = c i '/c', 1 _ i ?j < n + 1.
The matrices B(k), k = 1, 2, * , n, satisfy
THEOREM 8.1.

e AB)ej= 0, 1 ? i ? k < n, i < j ? n + 1.

Proof. The theorem is vacuously true for k = 0. Assume that it is true
for k = p- 1. Then, from (8.9),

el,AB(ei = e' AB -(I (P))ei

jtA(- ei -(c(p)lc(p))e' ABP1)p > p,

(e' j13P-1)ej, < pI

for 1 ? i < p < n and i < j ? n + 1, since C'p)e, = (p) /c p))ep for p < j < n + 1
and is zero otherwise. By the induction hypothesis e'AB(P-l)ei = 0 for 1 < i <
p - 1 < n and i < j < n + 1 and hence, so is the above for these values of i and j.
But for i = p < j < n + 1, we have from (8.8a) and the above that e'A =
C p)- (C P)/C(P))CP) = 0, concluding the proof.

From this theorem it follows that the kth approximation to the solution of (8.1),
computed by algorithm (8.8), satisfies the first k equations in (8.1). In algorithm (8.6),

(8.12) B'? = [JIb]

0O 1J

all subsequent matrices F(1, , n) are unit upper triangular, and the last n - k
components of the kth approximate solution equal bk+l , *- -, bn.

THEOREM 8.2. If A is nonsingular, then at the kth step of algorithm (8.8), not all
c(k), p = k, n, equal zero.

Proof. From the previous theorem and (8.7a) and (8.7b) we know that
n+1 n

Z - l) = E a ibi-) 0 for i = 1, , k - 1, p k,

If
n+1 n

CP(k)
=

ik
= ak = 0 for p = k, n,

____ i=l

then
n > a3bk1) = 0 for i = 1, ,k, p = k, ,n.

3 =1

This implies that the first k rows of the matrix A are orthogonal to the last n - k + 1
columns of B (k-). Since A is nonsingular this implies that B (k-), and hence from
(8.7b), that f(k-i) are singular. But as in the discussion preceding Eq. (8.11) we can
show that B(O), which is nonsingular, can be expressed as the product of f(k-1) with
a unit upper triangular matrix, contradicting the singularity of p (k-i). Therefore, at
least one c k) # 0, k < p < n.

842 D. GOLDFARB

These two theorems guarantee that algorithm (8.8) and, in particular, algorithm
(8.6), with partial pivoting will find a solution to (8.1) for A nonsingular.

9. Relationship to Gaussian Elimination. Although it is not obvious, algorithm
(8.6) and Gaussian elimination are related. To demonstrate this, consider the
n X (n + 1) matrix

(9.1) L = ,4(n) = [A j -b]L__i ___i

= [AB (n) Ax(n) - b].

By Theorem 8.1, L = AB(n) is lower triangular and Ax(n) - b = 0. Since B(n) is unit
upper triangular and bk() = b"'), for 1 < k < j - 1, the nonzero elements of L (and
AB(')) are given by

i-i

(9.2) 1= , a ? i ? j.
k=1

A comparison with (8.6a) reveals that ikk = Ckk), k = 1, * n.
Now, A has a unique factorization A = L1DUl, where L1, D and U1 are unit

lower triangular, unit upper triangular, and diagonal matrices, respectively. Since
B(n) 1 exists and is unit upper triangular and A = AB(n)B(n)-i U1 = (n)- and
L1D = AB(n). Hence, D has diagonal elements ikk = Ckk) k = 1, *.-, n. (Notice
that the determinant of A can be computed as jkjJ c=k)I) Also from (8.11) we have
that B(n)C = B?(') i.e.,

B
I 1

c I a
I

I dbl

I o 1 J to: 1J lo; "I

Thus U1 = B = C and ca = (U1l - L)b.
In Gaussian elimination, the original linear system is transformed on the forward

pass into

(9.3) Ux = L- Ib,

where U = DU1, and then (9.3) is solved by back substitution. Hence U = DC, and
the (i, j)th element of U equals c(W) for i < j and is zero otherwise.

An alternate method that is suggested by this analysis is the following:
Compute B(n) from (8.6a)-(8.6c) and L = AB` from (9.2). (Jkk = c(k) and has

already been computed while forming B(n).) Solve the system Ly = b for y, and
finally, compute x = B ny. This algorithm requires a total of 'n2(n + 1) multiplica-
tions and divisions. This is just ?n(n + 1) less than the number required by Gauss-
Jordan elimination. However, it is approximately fifty percent more than either
Gaussian elimination or algorithm (8.6) require for large n.

10. A More Efficient Method. In the case of algorithm (8.6) (i.e., unit upper
triangular B(k)), Theorem 8.1 shows that formulas (8.6a) through (8.6c) produce, on
the kth step, solutions to the n - k sets of k equations.

INVERTING MATRICES AND SOLVING EQUATIONS 843

allul + *- + alkuk + alp = 0

(I10. 1) *** P = k + 1, ,n,

aklUl ?+ * + akkUk + akp 0

in k unknowns ul, ... , Uk. If we apply this approach iteratively to the (n + 1) X n
matrix A = (A -b), replacing n in (10.1) by n + 1 we arrive at the fol-
lowing algorithm.

Compute

k-I

(10.2a) cI = E clkp pi + aiki, = k, , n + 1,
P=1

(10.2b) b(k = -ck IC ,= k + 1, n + 1,

(10.2c) b(k) = b(k-1) + b(k-1) 1 i = 1, , - 1, j= k + 1,.* ,n + 1,

for k=1, , n.
The solution to (8.1) is then given by x, = b(n+,J i = 1, , n. As in previous

algorithms, partial pivoting can be employed. Operational counts total to 'n3 +
n2 _ n multiplications and divisions and 1n3 + 2n2 -_ n additions and subtractions.
These figures are the same as those for Gaussian elimination and, as we have already
mentioned, are minimal for this class of methods. Equations (8.9), (8.10), and (8.11)
still hold, but with B?' = I and cMk) defined by (10.2a). After k steps,

1 2 2) ... b G+1 * * ... k+
1 2) . . k) ... (k

1 23 * 2, k + 1 b2, n+ 1

(10.3) 3 = |k* bk,k+l k * n+

and corresponding to Theorem 8.1 we have the following theorem:
THEOREM 10.1. In algorithm (10.2),

k

Z albt ?b p + lp = 0, 1 < i < k < p < 1.
3 =1

Theorem 8.2 remains valid. Finally, it is easy to show that B = U1 and ca =
-L- lb where L = AB'n) and the components a i of ca are equal to c (i) /c 0) = b'i
Geometrically, the kth approximation to the solution, i.e., &k+l, i = 1, , n, is
the point defined by the intersection of the hyperplanes corresponding to Xk+, =
0, ... , xi, = 0 and the first k equations in (8.1).

844 D. GOLDFARB

11. Relationship to Other Methods. We have already discussed the relation-
ship between algorithm (8.6) and Gaussian elimination. Since the operations of
algorithm (8.6) are performed according to a compact scheme, the previous discussion
is perhaps most pertinent to a comparison with the Crout form of Gaussian elimina-
tion. Algorithm (8.6) is even more closely related to other known methods. In fact,
it is essentially equivalent to Purcell's vector method [29], if one initiates that procedure
with a set of n + 1 dimensional vectors, e1, , en, v.1, where v,,1 = (b1, , b., 1)'
and e,, i = 1, 2, ... , n, are unit coordinate vectors. This equivalence is apparent
from a comparison of the iterative formulas that define the two methods.

Algorithm (8.6) is also related to Hestenes' version of his biorthogonalization
method [17] for solving systems of linear equations. In Hestenes' method, one applies
the biorthogonalization algorithm to the matrix

(11.1) (~~~~~~-A b

o I

The last column of the inverse of matrix (11.1) must be (x) where x is the solution to
(8.1). Only this column is sought, and therefore, the complete biorthogonalization
algorithm is not needed. Algorithm (8.6) is similar in that not all of the matrix B
is updated. Hestenes suggests using the transpose of matrix (11.1) as the initial esti-
mate of the inverse. If, however, the matrix (8.12) is used, then Hestenes' method
becomes essentially equivalent to algorithm (8.6). In Hestenes' method the term
to the right of the parentheses in (8.5) is first divided by the denominator and this
is then multiplied by the term within the parentheses, while in algorithms (8.6) and
(8.8), division is first performed on the term within the parentheses. If one chooses
B'?= A' in algorithm (8.8),

B(') = { AI bj

This is not the same as Hestenes' algorithm which starts with B'?' equal to the trans-
pose of matrix (11.1).

Algorithm (8.6) and (10.2) are very closely related. Therefore, it is not surprising
that the latter is also equivalent to special cases of Purcell's and Hestenes' methods.
These equivalences are obtained if one uses the identity, i.e., the coordinate vectors
e1, e2, .. , en+1, as the set of basic vectors in the vector method. This corresponds
to Purcell's choice. It is evident from the above discussion that Hestenes' and Purcell's
methods are essentially equivalent. This fact, however, seems to have gone unnoticed.

Algorithms (10.2) and (8.6) can also be shown to be compact forms of Aitken's
below-the-line elimination method, i.e., a forward pass of Gaussian elimination,
applied to

A' I' (11.2) K At -i I

a-bn dO

and

INVERTING MATRICES AND SOLVING EQUATIONS 845

b' A - b' b')

respectively. A similar statement can be made with regard to the cases of Purcell's
method and Hestenes' method that have already been discussed.

Aitken's method transforms a matrix A', whether it be the matrix (11.2) or (11.3),
to a matrix M k) 'A after k steps, 1 < k < n. The matrices M k)'A' and M(kl)'A'

at the kth and (k - I)st steps, are related by

M(k' A' = (Iv-`el)M(k-1 1 < k < n,

where

(M (k-1) M7n1
- (k-1)

(114~ (k) = p(J 'k __ Z..sp ak A1, = ?.1.i ~ (11 4) 5(k)V (M.'
A'),k

EnZ=
aMk- k + I, , n + 1

and is zero otherwise. At the start of the process M''= I. Thus the matrices M(k)

and M(k- 1) satisfy

(11.5) M(k) = M(k1)(I - ekv), 1 < k < n.

If we choose A' equal to matrix (11.2), then it is easily verified, taking into account the
zero elements of M(k-l), that formulas (11.4) and (11.5) are exactly those that are
used in algorithm (10.2), where M(k) equals the matrix B(k) of (10.3) and V 4k)

c ~0/C(k)
_

_6k) of Eq. (10.2b).
If we apply Aitken's method to matrix (11.3),

MM? ---= - --- =]- - -l-k-K-]__ I
lb'A - b' b', blb' I J -b'; 0,

and if we associate matrix (8.12) with M'0? then formulas (11.4) and (11.5) are those
of algorithm (8.6), where M(k) equals the matrix '(k) of (8.7b).

Algorithms (8.6) and (10.2) are also related to Morris' escalator method [24],
[25] and its equivalent, the method of orthogonal vectors [13], especially when A is
symmetric. In the escalator method, the matrix f(n) is also computed. The formulas
used in this computation are different from those of algorithms (8.6) and (10.2),
although not as different as one might think at first. The computations performed in
algorithms (8.6) and (10.2) that give rise to the first n columns of B(n) can be reordered
as shown by Goldfarb [15], so that they are very similar to those of the escalator
method.

Algorithm (10.2) and, to a lesser extent, algorithm (8.6) are also very directly
related to the bordering method. The bordering method is based upon the following
easily proved lemma.

LEMMA 11.1. Let the k X k square matrix A(k) be partitioned as

A(k-1) Uk-1
A(k)=

k v- 1 akk

where A(k-1) is a nonsingular square matrix of order k - 1, akk is a scalar, and Uk-l and
Vk-l are (k - 1)-dimensional column vectors. If A(k) is also nonsingular, then

846 D. GOLDFARB

ak , - vk lA7(kl)uk-l # 0 and

AkA1U-1 ?k- k-1)ukvl A7A1 Xk i(-)ukl
- 1 ~

-1 __ l akk - Vk-1 A(k-)uk-.1 I - Vk-1 /(k-1)Uk-1
A(k) - lk.

Vk -I A (k- 1)

akk vk-1 v kl) akk -1 -
k1 A(k-1) Uk.1 Vk-1 A (k-1) Uk

Conversely, if akl -vk - A-1 l)uk-1 = 0, then A(,) is singiular.
Let A(k) be the leading k X k square submatrix of A and recall from Theorem 10.1

that the column vectors a,k) = (li * k j)' and ik) = S , bki))' satisfy
A(k) f3k) + a (k) = 0 for j = k + 1, , n + 1. Therefore if A(k) and A(kl1) are non-
singular, it follows that f.k) = --A -la k), for] = k + 1, ,n + 1; that is,

0(k-l) (kl) (vk f(k1) + a k)

(k) = akk + k k + 1, n + 1

t

(-
ak 1)

akk + Vk-1-dlk

since k-1) = -A-'-,)a ,kl) j = k, ?.. n+ 1, and uki1 = a k1) This last equation

is equivalent to algorithm (10.2) for, by Eq. (10.2a), c(k) = v -l1k-l) + aki, j-
k, .* ,n+1.

12. Computational Aspects. Operational counts have already been given. Based
upon this criterion, the modification methods described for solving systems of linear
equations compare favorably with other known methods.

They also appear attractive with regard to data handling and storage requirements.
If one is willing to write over the original matrix, A, and right-hand side, b, then the
methods discussed here all require the same amount of storage and are not much
different from Gaussian elimination in its regular or compact forms. If A cannot be
written over, then algorithms (8.6) and (10.2) require less additional storage for
intermediate computations than do any of the compact forms of Gaussian elimina-
tion. The amount of additional storage locations required by algorithm (10.2) can
be shown to be equal to the greatest integer less than or equal to 1n2 + n + 2, as
was first pointed out by Purcell [29]. The same result also holds for algorithm (8.6).

Input of data is very convenient for algorithms (8.6) and (10.2) since single rows
of the matrix A = [A -b] are required on each iteration. (Algorithm (8.6) also
requires the vector b initially.) These modification methods therefore, are particularly
well suited for solving large problems with storage restrictions where handling of
data may be a problem. The computations of algorithm (8.4), i.e., Gauss-Jordan
elimination, can also be ordered so that only single columns of A need be input on
each iteration.

A full discussion of the effect of rounding errors on the modification methods
described above will be presented in a subsequent paper. However, some important
points shall be mentioned here. If partial pivoting is employed in the usual sense-
i.e., one determines which C(k), j = k, , n, is of maximum modulus, and uses it
as the divisor in steps (8.6b) or (10.2b) with appropriate relabelling of the columns of
A and B3 (k)-one can only ensure that all multipliers, 6b = -cO>)jC(k), j =

k + 1, , n, have absolute value less than or equal to one. This is of great importance

INVERTING MATRICES AND SOLVING EQUATIONS 847

in obtaining error bounds on the elements of the matrices B(k), k = 1, * , n. How-
ever, if one wants error bounds on all elements of these matrices, one must also have
that lC?kc k) t < 1 in (8.6d) and (8.6e) and lb kl +1 I _ 1 in (10.2b). This problem is
easily resolved by extending the normal partial pivoting scheme to include c'I+k). The
solution vector, y, that is obtained by this process, assuming that pivoting never
occurs in the pth column of A, is no longer the solution to the original set of Eqs.
(8.1). If algorithm (10.2) is used, y is the solution to a set of equations obtained from
(8.1) by interchanging the pth column of A, Ap, with the right-hand side b and multi-
plying both column vectors by - 1. If algorithm (8.6) is used, y solves (8.1) with Ap,
replaced by bA, - b and the right-hand side replaced by -A,. If a solution is obtained
with either algorithm, then x, = yjyp, i # p, and x, = ljy,, in the former case, and
xi = Y/YPy, i # p, and x, = bp + ljyp, in the latter. If yp = 0, then the original
matrix A is singular.

A scheme such as the one described can also be used with complete or maximal
row pivoting in Gaussian elimination. As far as the author knows, this very simple
idea has not been previously suggested. Further investigation of it is needed to deter-
mine its merits.

13. Numerical Examples. Algorithms (2.6), (2.8) and (10.2) were programmed
in APL/360 and tested on several problems. In APL/360 all numbers are carried to a
precision of approximately 16 decimal digits, which is also the precision of internal
calculations. The output exhibited below, however, has been rounded, for print-out
purposes only, to either 5 or 10 decimal digits. Neither code employed a pivoting
strategy.

Algorithm (2.8) was first tried on the following symmetric matrix A, also used
by Faddeeva [11] for illustrative purposes.

1 0.42 0.54 0.66

(13.1) A = 0.42 1 0.32 0.44

0.54 0. 3 2 1 00..2 2

The computer output that follows should be self-explanatory.
INITIAL APPROXIMATION TO A INVERSE IS

1 0 0 0
0 1 0 0
O 0 1 0

O O 0 1

TIIE I/EW/ APPROXIMlATIONI TO A II VERSE IS
1 0 0 0
O.L42 1 0 0
0.54 0 1 0
0.66 O 0 1

THE RESIDUAL AB-I IS:
0 0 42 0. 54 0.66
0 0.1764 0.0932 _0.1628
0 0.0932 _0.2916 0.136'4
0 0.1628 0.1364 0.435G

THE NlEW APPROXIMtATION TO A IPNVEIRSE IS:
1.214L2 0.50996 0 0
0 .50996 1.214t2 0 0
o .49247 0. 1 1 3 1 6 1 0
0.57698 0.19767 0 1

848 D. GOLDFARB

THE RESIDUAL AB-I IS:
6.9389E 17 2.7756E 17 4.9247E 1 5.7698E 1
1.3878E517 5.5511E 17 1.1316E 1 1.9767E 1
1.3878E 17 1.3878E 17 3.0215E 1 1.5482E 1
1,3878E 17 0.0000E0 1.5482E 1 1t.6778E 1

THIE NEW APPROXIMATION T'O A INVERSE IS
1.5617 0.4301 0.7057 0
0.41301 _1.2325 0.16216 0
0.7057 -0.16216 1.433 0
0.68624 0.22277 0.22186 1

THlE RESIDUAL AB-I IS:
9.7145E 17 4.1633E 17 O.OOOOEO 6 .8624E 1
8.3267E 17 4.3021E 16 4.1633E 17 2.2277E 1
4.1633E 17 1.3878E 517 3.4694E 16 2.2186E 1
O.OOOOEO O.OOOOEO 1.3878E 17 5.0213E 1

TH1E NEW APPROXIMATION TO A INVERSE IS :
2.5076 0.12304 1.0115 1.3783
0.12304 1.3322 0.26143 0.414745
1.0115 0.261143 1.5318 0.44561
1.3783 0.44745 o.4L4561 2.0086

THE RESIDUAL AB-I IS:
O.OOOOEO 0.000OEO 2.2204E 16 2.2204E516
1.3878E 16 5.2736E 16 6.9389E 17 1.3878E 16
2 .2204E 16 2.7756E 17 5 .1348E 16 1.1102E 16
4.4409E 16 1.2490E 16 1.3878E 17 0.000050

Using this same matrix (13.1) and a right-hand side equal to (0.3, 0.5, 0.7, 0.9)'
algorithm (10.2) generated the following output.

c
1 0.42 0.54 0.66 0.3

0.42 0.54 0.66 0.3
0 0 0 0
0 b 0 0
0 0 0 0

C 0 0 0 0
10.8236 0.0932 0.1628 -0.374

0.42 -0.4924720738 -0.5769791161 0.1092763477
0 0.113161729 0.1976687712 0.4541039339
0 0 0 0
0 0 *0 0
0 0 0 0

C
10.8236 0.6978533269 -0.1548227295 -0.4956775134

0.42 -0.4924720738 -0.6862368465 0.2405211291
0 0.113161729 0.2227743444 0.3737264072
0 0 0.2218556873 0.7102889594
0 0 0 0
0 0 0 0

C
10.8236 0.6978533260 0.497871221 _ 0.738040755

0.42 -0.4924720738 -0.6862368465 1.257793747
0 0.113161729 0.2227743444 0.04348730439
0 0 0.2218556873 1.039166252
0 0 0 1.482392884
0 0 0 0

In the kth segment of output, i.e., below the kth C, the first line printed is c ()
c(k) , c .

k
. c (k) followed by the last n columns of the matrix fi(k) - I, where ~(k)

is the matrix (10.3). The solution is found in the last column of the last block of
output.

INVERTING MATRICES AND SOLVING EQUATIONS 849

A more stringent test of algorithm (10.2) was provided by the ill-conditioned set
of equations used by Morris to test his escalator method [24]. The matrix A = [A -b]
for this system is

539999 523286 435785 362242 276472 184691 123679
523286 787190 362242 525651 184691 280269 48448
435785 362242 388141 297304 263974 167936 124950
362242 525651 297304 437677 167936 263246 47304
276472 184691 263974 167936 201578 114921 106470
184691 280269 167936 263246 114921 194065 37831

The last block of computer generated output follows.

c
539999 280099.7317 23581.4958 9541.117411 7654.575691 635.3333588 -2670.657675

0.9690499427 1.014782143 1.758366662 1.486706606 1.386346478 5.386252422
0 0.2144073074 -1.009028197 -0.6559707279 0.7331152348 2.813346900
0 0 1.79847381 2.3017601 2.835645507 11.59232355
0 0 0 0.7371887929 1.600666275 -6.364825112
0 0 0 0 1.720237317 7.992872117
0 0 0 0 0 4.20355336
0 0 0 0 0 0

The vector or residuals, rounded to three significant figures, corresponding to the
above computed solution was (2.33E-10, 0, 6.98E-10, 4.66E-10, 0).

The ill-conditioned 5 X 5 matrix A with elements

I 20! 1
2 X 106 i + . I - _

related to the 6 X 6 Hilbert matrix, and used by Wilkinson [36] in a numerical ex-
ample, was also used to test algorithm (2.8). The fifth and last iteration of algorithm
(2.8) yielded the following approximate inverse and residual matrix.

THE NEW APPROXIMATION TO A INVERSE IS:
248.015873 -2314.814815 6944.444444 -8333.333333 3472.222222

-2314.818415 24305.55556 -77777.77778 97222.22222 -41666.66667
6944.444444 -77777.77778 259259.2593 -333333.3333 145833.3333

-8333.333333 97222.22222 -333333.3333 437500 -194444.4444
3472.222222 -41666.66667 145833.3333 -194444.4444 87500

THE RESIDUAL AB-I IS:
-8.881784197E-13 -6.146194664E-13 -3.872457910E-13 -3.232969448E-13 -1.669775429E-13
-2.216893336E-12 -2.955857781E-12 -6.082245818E-12 -3.240074875E-12 -3.751665645E-12

2.000888344E-11 -1.364242053E-11 -8.526512829E-13 -1.182343112E-11 8.469669410E-12
7.275957614E-12 -1.000444172E-11 -1.875832822E-11 -5.684341886E-12 1.818989404E-12

-1.136868377E-11 -1.733724275E-11 -9.322320693E-12 -9.492850950E-12 -6.878053682E-12

The APL/360 matrix division function, 3, was also used to invert A. The final
result was identical to the output above, rounded to 10 decimal digits. The residual
matrix for this computed inverse is shown below. The implementation of the operator
LE in APL/360 is described by Jenkins [21]. Jenkins' code makes use of Householder

transformations to decompose A and incorporates pivoting and scaling procedures.
Algorithm (2.8) and the operator [E worked equally well on this example. The
residual of maximum modulus was approximately 2.0 X 10- 1 for the former method
and 6.9 X 10-11 for the latter.

6.288303211E-13 -1.011812856E-11 4.001776688E-11 -6.912159733E-11 3.905142876E-11
-1.527666882E-13 2.273736754E-13 1.546140993E-11 -2.000888344E-11 9.663381206E-12
-1.136868377E-13 -5.115907697E-13 -6.423306331E-12 -1.404032446E-11 7.219114195E-12
-3.552713679E-14 -5.684341886E-13 1.534772309E-12 -5.172751116E-12 6.480149750E-12
-1.350031198E-13 5.684341886E-13 1.421085472E-12 7.958078641E-12 3.92215901E-12

Residual Matrix

850 D.GOLDFARB

As an extreme test of algorithm (2.6), the 10 X 10 matrix A with elements

20!(1\
a= 18 i +j) 1< i, j < n,

was inverted. One full pass of the algorithm resulted in the following inverse matrix,
listed columnwise.

2.4883E3 -8.9595E4 1.1649E6 -7.6116E6 2.8546E7
-8.9598E4 3,6292E6 -5.0330E7 3.4255E8 -1.3214E9

1.1650E6 -5.0332E7 7.2706E8 -5.0897E9 2.0042E10
-7.6123E6 3.4257E8 -5.0898E9 3.6372E10 -1.4549E11

2.8550E7 -1.3215E9 2.0043E10 -1.4550E11 5.8926E11
-6.5263E7 3.0837E9 -4.7511E10 3.4920Ell -1.4286E12

9.2465E7 -4.4382E9 6.9234E10 -5.1400E11 2.1202E12
-7.9262E7 3.8519E9 -6.0694E10 4.5435E11 -1.8878E12

3.7652E7 -1.8482E9 2.9365E10 -2.2136E11 9.2492E11
-7.6069E6 3.7651E8 -6.0238E9 4.5678E10 -1.9184E11

-6.5254E7 9.2449E7 -7.9247E7 3.7644E7 -7.6052E6
3.0834E9 -4.4376E9 3.8514E9 -1.8480E9 3.7645E8

-4.7508E10 6.9228E10 -6.0688E10 2.9361E10 -6.0230E9
3.4919E11 -5.1397E11 4.5432E11 -2.2134E11 4.5673E10

-1.4285E12 2.1201E12 -1.8872E12 9.2486E11 -1.9182E11
3.4920E12 -5.2188E12 4.6730E12 -2.3019E12 4.7955E11

-5.2189E12 7.8460E12 -7.0614E12 3.4939E12 -7.3074Ell
4.6731E12 -7.0615E12 6.3836E12 -3.1709E12 6.6549E11

-2.3020E12 3.4940E12 -3.1709E12 1.5805E12 -3.3274Ell
4.7958E11 -7.3077E11 6.6550Ell -3.3274E11 7.0245E10

The element of largest absolute- value in the residual m-atrix, corresponding to
this computed inverse, was approximately equal to 1.37 X 102. This was only slightly
larger than the residual of maximum modulus, 1.04 X i0', obtained by using the
operatorl L.

A second pass of algorithm (2.6) was performed, starting with the above approxi-
mate inverse as the initial guess, B'). This produced a new approximate inverse,
none of whose elements differed from the corresponding elements in the above matrix
by more than 0.2 percent. The residual of maximum modulus was reduced to ap-
proximately 8.2 X i0'.

Department of Computer Science
The City College of CUNY
139th Street & Convent Avenue
New York, New York 10031

1. A. C. AITKEN, "Studies in practical mathematics. I. The evaluation with application
of a certain triple product matrix," Proc. Roy Soc. Edinburgh Sect. A, v. 57, 1936/37, pp. 172-
181.

2. M. S. BARTLETT, "An inverse matrix adjustment arising in discriminant analysis,"
Ann. Math. Statist., v. 22, 1951, pp. 107-111. MR 12, 639.

3. E. BODEWIG, Matrix Calculus, North-Holland, Amsterdam, 1956. MR 18, 235.
4. C. G. BROYDEN, "A class of methods for solving nonlinear simultaneous equations,"

Math. Comp., v. 19, 1965, pp. 577-593. MR 33 ?6825.

INVERTING MATRICES AND SOLVING EQUATIONS 851

5. P. D. CROUT, "A short method for evaluating determinants and solving systems of
linear equations with real or complex coefficients," Tranis. Amer. Inst. Elect. Enigrs., v. 60,
1941, pp. 1235-1240.

6. J. E. DENNIS, JR., On the Convergence of Broyden's Metliod for Nonlinlear Systems
of Equations, Technical Report #69-48, Dept. of Comput. Sci., Cornell University, Ithaca,
N.Y., 1969.

7. M. H. DOOLITTLE, Metlhod Employed in the Solution of Normal Equations and the
Adjustment of Triangulation, U.S. Coast Guard and Geodetic Survey Report, 1878, pp. 115-
120.

8. W. J. DUNCAN, "Some devices for the solution of large sets of simultaneous linear
equations," Pliilos. Mag., (7), v. 35, 1944, pp. 660-670. MR 7, 84.

9. P. S. DWYER, Linear Computations, Wiley, New York, 1951. MR 13, 283.
10. A. P. ERgOV(ERSHOV), "On a method for inverting matrices," Doki. Akad. Nauk

SSSR, v. 100, 1955, pp. 209-211. (Russian) MR 16, 1082.
11. D. K. FADDEEV & V. N. FADDEEVA, Computational Methods of Linear Algebra,

Fizmatgiz, Moscow, 1960; English transl., Freeman, San Francisco, Calif., 1963. MR 28
?1742.

12. L. Fox, An Introduction to Numerical Linear Algebra, Monographs on Numerical
Analysis, Clarendon Press, Oxford, 1964. MR 29 # 1733.

13. L. Fox. H. D. HUSKEY & J. H. WILKINSON, "Notes on the solution of algebraic
linear simultaneous equations," Quart. J. Mecli. Appl. Math., v. 1, 1948, pp. 149-173. MR 10,
152.

14. C. F. GAUSS, "Supplementum theoriae combinationis observationum erroribus minimis
obnoxiae," Werke. Band IV, Gottingen, 1873, pp. 55-93.

15. D. GOLDFARB, Modification Methods for Inivertinig Matrices and Solving Systems of
Linear Algebraic Equations, IBM-Philadelphia Scientific Center, Technical Report #320-2998,
1971.

16. J. GREENSTADT, "Variations on variable-metric methods (with discussion)," Matli.
Comp., v. 24, 1970, pp. 1-22. MR 41 #2895.

17. M. R. HESTENES, "Iterative computational methods," Comm. Pure Appi. Matlh., v. 8,
1955, pp. 85-95. MR 16, 863.

18. M. R. HESTENES, "Inversion of matrices by biorthogonalization and related results,"
J. Soc. Indust. Appl. Math., v. 6, 1958, pp. 51-90. MR 19, 1080.

19. H. HOTELLING, "Some new methods in matrix calculation," Ann. Matlh. Statist., v. 14,
1943, pp. 1-3 4. MR 4, 202.

20. A. S. HOUSEHOLDER, The Theory of Matrices in Numerical Analysis, Blaisdell,
Waltham, Mass., 1964. MR 30 #5475.

21. M. A. JENKINS, The Solution of Liniear Systems of Equations and Linear Least
Squiares Problems in APL, IBM-New York Scientific Center, Technical Report #320-2989,
1970.

22. V. V. KLJUEV & N. I. KOKOVKIN-9CERBAK, "On the minimization of the number
of arithmetic operations for solving linear algebraic systems of equations," 2. Vycisl. Mat. i
Mat. Fiz., v. 5, 1965, pp. 22-33 = U.S.S.R. Comnput. Matli. anid Matli. Plhys., v. 5, 1965, pp.
25-43. MR 30 #2672.

23. G. KRON, Diakoptics, Macdonald, London, 1963.
24. J. MORRIS, "An escalator process for the solution of linear simultaneous equations,"

Pliilos. Mag., (7), v. 37, 1946, pp. 106-120. MR 8, 287.
25. J. MORRIS, The Escalator Method in Enigineering Vibration Problems, Wiley, New

York, 1947. MR 9, 382.
26. T. PIETRZYKOWSKI, Projection Method, Zakladu Aparatow Matematycznych Polskiej

Akad. Nauk. Praca A8 (as reported in Householder [20]).
27. M. J. D. POWELL, "A theorem on rank one modifications to a matrix and its inverse,"

Comput. J., v. 12, 1969/70, pp. 288-290. MR 39 #6502.
28. M. J. D. POWELL, "A new algorithm for unconstrained optimization," in Nonlinear

Pragramming, J. B. Rosen, 0. L. Mangasarian & K. Ritter (Editors), Academic Press, New
York, 1970, pp. 31-65.

29. E. W. PURCELL, "The vector method of solving simultaneous linear equations," J.
Mathematical Pliys., v. 32, 1953, pp. 180-183. MR 15, 471.

30. J. SHERMAN, Computations Relating to Inverse Matrices. Simultaneous Linear Equa-
tions an1d the Determination of Eigenvalles, Nat. Bur. Standards Appl. Math. Ser., no. 29,
U. S. Government Printing Office, Washington, D.C., 1953, pp. 123-124. MR 15, 164.

31. J. SHERMAN & W. J. MORRISON, "Adjustment of an inverse matrix corresponding to
changes in a given column or row of the original matrix," Ann. Math. Statist., v. 20, 1949,
p. 621.

32. J. SHERMAN & W. J. MORRISON, "Adjustment of an inverse matrix corresponding to
a change in one element of a given matrix," Ann. Math. Statist., v. 21, 1950, pp. 124-127.
MR 11, 693.

852 D. GOLDFARB

33. V. STRASSEN, "Gaussian elimination is not optimal," Numer. Math., v. 13, 1969, pp.
354-356. MR 40 #2223.

34. H. S. WILF, "Matrix inversion by the annihilation of rank," J. Soc. Indust. Appl.
Math., v. 7, 1959, pp. 149-151. MR 21 #6689.

35. H. S. WILF, "Matrix inversion by the method of rank annihilation," in Mathematical
Methods for Digital Computers, Wiley, New York, 1960, pp. 73-77. MR 22 #8685.

36. J. H. WILKINSON, Rounlding Errors in Algebraic Processes, Prentice-Hall, Englewood
Cliffs, N.J., 1963. MR 28 #4661.

37. M. A. WOODBURY, Invertinig Modified Matrices, Statistical Research Group Memo.
Report, no. 42, Princeton University, Princeton, N.J., 1950. MR 12, 361; see also Householder
[20].

38. G. ZIELKE, "Inversion of modified symmetric matrices," J. Assoc. Comput. Mach.,
v.15,1968, pp.402-408.

	Cit r5_c6:
	Cit r35_c39:
	Cit r21_c23:
	Cit r22_c24:
	Cit r37_c41:

